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The Coulomb pair density matrix Ga(r, r') for attractive and repulsive potentials 
and for all values of parameters is determined in the form of simple series or 
integrals. These results are useful in both theoretical and numerical studies. 

KEY WORDS: Quantum statistical mechanics; elementary processes in 
plasma. 

1. I N T R O D U C T I O N  

In this paper, we are concerned with the density matrix Gp(r, r') of two 
particles interacting through either an attractive or a repulsive Coulomb 
potential (like e - p  or e - e - ) .  Gp(r, r') is a function of  five parameters: the 
two vectors r and r', the temperature r - 1 ,  and the discrete variable e = _ 1, 
for the sign of  the potential. 

The normal  way to study the pair density matrix is to expand it in a 
series of  the eigenfunctions of  the two-body Hamiltonian H, 

Gp(r, r') = ~, e-Pe~k Ei(r) ~k*~(r') 
i 

This expansion involves the radial functions of the continuous spectrum of 
H and also the radial functions of  the discrete spectrum when the potential 
is attractive. Thus Gp(r, r') appears as a double series of  special functions. 
By using this procedure, many properties have been obtained for the 
Coulomb pair density matrix. Of  the extensive literature on that subject, we 
cite the following: Davies and Storer C1) derive the value at the origin, 
Gp(0, 0); Wichmann and W oo  ~2) give a double-integral representation for 
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Gp(r, r'); and Hostler (3~ obtains an expression for the Laplace transform 
Go~(r, r') in terms of Whittaker functions. Among the important papers 
concerning the effective calculation of Gp are those of Minoo et alJ 4) and 
Pollock. (5) Other works on the Coulomb pair density matrix can be found 
in, e.g., refs. 8-10. 

However, calculations starting from the series expansion over the 
energy eigenfunctions are rather complicated and an easier approach to 
Gp(r, r') is possible. In fact, when the two-body potential V(r) depends very 
simply on r, it appears that the density matrix is a function which is less 
complicated than the eigenfunctions of the Hamiltonian. A simple example 
of this is the case of the one-dimensional potential V(x)= -kx ,  where the 
eigenfunctions are Airy functions, whereas the density matrix Gp(x, x') is 
simply a Gaussian. 

The main reason for this simplification of Gp comes from the fact that 
the density matrix satisfies the two Bloch equations: 

-OpGp(r, r')= H(r) Gp(r, r')= H(r') Gp(r, i") 

For particular forms of V(r), it follows that Gp(r, r') has special depen- 
dences on r and r' or on combinations of these variables. These specific 
properties of course do not hold true for the eigenfunctions of the 
Hamiltonian; yet they represent an efficient means to calculate Gp(r, r'). In 
this way Hostler and Pratt (6) have shown that for the Coulomb potential, 
1/r, the density matrix depends only on two space quantities Irl + Ir'l and 
I t ' - r ' [  and not on three independent quantities. 

From the two Bloch equations and the property obtained by Hostler 
and Pratt, we derive various forms for the density matrix concerning all 
possible values of the five parameters with no limitation; in particular, the 
temperature can decrease to zero. These results allow us to calculate the 
density matrix simply and accurately; in most cases, a precision of 10 -6 
can be obtained with a pocket calculator. 

We first introduce various notations and definitions and examine some 
properties of the density matrix. We then derive its expansion in power of 
fl, the first term of which was the subject of our initial paperJ 7) Next we 
show that the self-function Gp(r, r) and the exchange function Gp(r,-r)  
each satisfy a differential equation similar to the Bloch equations for the 
density matrix in the general case. 

The coefficients of the powers of fl in the density matrix expansion are 
functions of space variables each of which we determine in the form of a 
very simple series. This result allows us to calculate accurately the density 
matrix in the high-temperature domain (/> 1 eV for two e - ) .  
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Thus, we show that all of these coefficients can be deduced from the 
value at the origin Gp(0, 0). This property is used to sum exactly the series 
in powers of fl and we obtain the density matrix Gp(r, r') in an integral 
form which generalizes the result of Davies and Storer for Gp(0, 0). The 
density matrix is then expressed as a double integral or as the integral of 
a series. These expressions can be easily used to calculate the density 
matrix for all temperatures, particularly in the low-temperature range. Our 
numerical calculations agree well with those of Pollock. 

Finally, we give some applications. The small-distance expansion, 
valid for all temperatures, shows that the density matrix tends, in the limit 
of decreasing temperature and for finite distances, to a finite limit apart 
from a scale factor which is temperature dependent. The large-distance 
expansion of the self-function is given up to the order h 6. Some tabulated 
values are included to compare results from the various methods described 
above. 

This paper gives most of the results for computing the density matrix. 
Extensive results, proofs, and applications will be presented elsewhere. 

2. E Q U A T I O N  F O R  G T 

The relative pair density matrix G~(r, r') is defined by 

G~(r, r') = <rl e -~wh Ir'> (1) 

where the time r is related to the temperature T =  fl-~ by 

= flh = h/T (2) 

H is the two-body Hamiltonian 

h 2 
H = - ~ m m  A+V(r) '  V(r)=e~r ( e = + l , ~ > O )  (3) 

m is the reduced mass, and repulsive and attractive potentials correspond 
respectively to e = +1 and e = - 1 .  We will also use e as a coupling 
parameter when calculating expansions in powers of the potential. The 
distances r and r' can be expressed in units of the de Broglie thermal 
wavelength or in units of the Bohr radius; thus we introduce the following 
notations: 
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Ch'g~ 1/2 
~ =  I r - r ' J  =2/x \2mJ  a =  Irl + Ir'l =2v  \ 2 m J  

2m~ 2m~t 2 
r * = r  ~*=~ h 2 , h 3 

(~<v) (4) 

X = y 2 - - ] . I  2, Z = V  2, y----lZ 2 ( O < ~ x < ~ z )  

The exchange case r ' =  - r  corresponds to v =/z or  x = 0 and the self-case 
r ' =  r corresponds to/x  = 0 or x = z. 

In the perfect gas limit (e---> 0) G~ tends to G ~ 

, / m \3/2 
)=t J e-" (5) 

The effective potential  P~(r, r') is defined by 

, / m \ 3 / 2  

G~(r,r')=G~ K,(r,r') (6) 

where 

#12 ~ e _p2 -- Pt(r,r') K ~ ( r , r ' ) = e -  K~(r,r') (7) 

F rom the definition (1) of  G~, we derive the two Bloch equations 

hO~G~(r,r')-- ~--s G~(r,r ' )= ~ - V ( r ' )  G~(r,r') 

G~(r,r')----~-~ o 6 ( r -  r ' )  

(8) 

G~ is, a priori, a spatial function of Irl, Ir'l, and 0, the angle between the 
two vectors r and r'. We also can use the quantities tr and a given in (4), 
and b = I r l -  Ir'l. F r o m  the symmetry  in the exchange of  r and r',  it follows 
that  G~ has to be an even function of b. Since the Cou lomb potential  is 
weakly singular near  the origin, P~ is everywhere finite, and for z--+ 0, G~ 
tends to G ~ which does not  depend on b. Now,  the special dependence of  
V on r = (a + b)/2 leads to a G~ which does not  depend on b for all values 
of  3. This property,  which is not obvious, has been shown by Hostler  and 
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Pratt. (6) Then G~ depends only on the two spatial variables a and a, and, 
from (8), we deduce the two differential equations 

(9) 

07" ( . . . .  =D* (10) 

with the following definitions for D* and D*: 

( y2__~2 02 1 0  e x ~ .  ) 
D g - - D * = - ~  2vp Olt~v -~ vOv 

= 2  
v., +. ,  ~., + . ~ ,  * r ar 0r 

(11) -~_~I/'o ~ 0 2 2v 02 + 2 L ~  
D*=4r" \Ov~ + OI.t~-t I.t OltOv ItOl.tJ 

O 2 /O 2 1 O~ 
- o e - L ~ + -;~ r .  ) 

The derivatives are taken with fixed r*. Therefore G~ does not depend on 
the third variable b, because the two equations (9) and (10) are compatible. 
Moreover, it follows that 

(Dg- -D*)  gT~ = 0 (12) 

which does not contain derivatives with respect to r*. The time r* and the 
coupling parameter e appear in (12) by the product e x/c~, and in both 
limits r* ~ 0 and e ~ 0, K~ tends to/~0 = exp(-/.t2). 

3. ITERATIVE SOLUTION A N D  GENERAL PROPERTIES 

In the variables /l ,v ( 0 ~ / z ~ v < o o )  Eq.(12) is a second-order dif- 
ferential equation of hyperbolic type. To solve it, we consider the following 
expansion in powers of e x//~-: 

K,(/~, v )=  y'  ( - - ex /~- ) "  ~"(/~, v) (13) 
n~>O 

From (12) it follows that 

(112 -- '/'/ 2 02 0 )  " / ~ n = / ' ~ ' ~ ' - 1 2 / ~  O~OV -~V (14) 
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The nonsingular solution, which tends to zero as v ~ 0% is 

~"(/~, v) = r _ p~ 2/1' d/~' [ ~ -  l(p,, v'), ~o(/~, v) = e -u2 (15) 

We deduce that the h'~ are entire functions of/~2 and v, and then that K~ 
is an entire function of e , , /~, /~2,  and v. In particular, it follows that the 
value at the origin does not depend on the angle 0 or the ratio v/1~. 

We have integrated (15) up to the order 4. Complexity is rapidly 
increasing and we only give the first two orders: 

1 v+t~_~+~ dvl e-'~ 
J~l(/l, v) = e -~'2 ~ Log v --/~ .J, v 1 - -p  2 2 

-~2(I.t, v)= g(I.t)+ Log2 V+It flv dvl V2--~ 2 
•--].,l t •2--] .12 g(vl) Log v2__]A2 

(16) 
fv +~ d v ~  vl + v 

- v2_lt2 g(vl Log vl - v 

g(u) = f fo~ dt e -'2 

The first function R~, equal to e-~2I(/~, v) with the notation of ref. 7, 
has been studied in this paper. These functions ~ are finite at all distances 
(even for/~ = v) and tend to zero at large distances. They satisfy a second 
differential equation. From (10) we deduce 

f O 0 2 2 v 0  z 2 0 ( 0  O ) _  2 ( n _  3)1 .~(/1, v) 0 
~v,_+~2-~ P OpOv+~t-~p+ 2 p ~ + v  = 

(17) 

This equation is compatible with (14) and will be very useful in the 
following, because it will allow us to obtain a second-order differential 
equation for the exchange function K(v, v) and a third-order one for the 
self-function R(/~ = 0, v). 

4. EXCHANGE FUNCTION 

Separation of variables is obtained for Eq. (10) when using v and 
x = v2-1 ~z or z = v 2 and x. The function ~ is an entire function of x and 
x/~. We expand R in powers of x, 

g'Cx, z)= ~ xp.~';(z) (18) 
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p = 0 gives the exchange function, denoted by A, 

R(x=O,z)=2p=o(Z)=2(z), s 

From (12) and (10), we deduce, respectively, 

(19) 

( p + l )  A ~ + ( p +  1)Ap+, = 2x/c ~ 

n - 3  02 (z+2)O+p_~_ 1 (P + 1)2-4~+1 [z~+ 4;= 
(20) 

~ n  By eliminating Ap +1 between the two equations, we derive an equation for 
the p order alone: 

[ 02 ( 3) 0 ( ~ - ~ ) 1  "47'-I d ~  Z-~z2+ z+p+~ ~z + p - -  " ~ =  2x/c~ ' =-~-.T (21) 

The function d ~ follows from R o =  e-U2= eX-Z. 
For p = 0, the solution of (21), which is regular at the origin and tends 

to zero at infinity, can be written in the form 

~,(z) x//-~ +~ - v / t + l e _ t z u ( n - - 1  3 ) 
= ~n~n.1 fl d/Log" v /~_  1 ~ ,2, tz (22) 

where U is the confluent hypergeometric function.~l 1) The limit z ~ 0 gives 
back the values at the origin' �9 (1) 

2"(z = 0 ) - 6 g ,  4o~ 

v:; ~(n) 
~g  - 2 " -  2 F ( ( n  - 1 ) / 2 )  

(n~>2) 
(23) 

((n) is the Riemann zeta function. We shall also use expressions which 
contain ~g for n < 0 with the following convention: 

a o - - "  - 0 (n < 0) (24) 

5. SELF-FUNCTION 

In the same way a differential equation for the self-function alone can 
be obtained by using variables v and p or rather z =  v 2 and y=p2 .  The 

822/80/I~ 
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function K", which is an entire function ofy  and x/~, is expanded in powers 
of y: 

J~"(y, z) = ~ yPB~,(z) (25) 
p~>O 

For p = 0, we have the self-function, denoted by B, 

/~(y = O, z) = Bp =o(Z) = B(z) 
(26) 

s  = 0, z) = ~;=o(Z) = S"(z) = y, zp2",,(z) 
p~>0 

From (12) and (10), we deduce 

j~n--  1 

( p + l ) z O - - ~  " , = ( p + l ) - - O ~ ; , +  2" Oz P+ Oz x~ ~ 

1 0 [z 02 (z + ~)  ~z + ( p -  ~ - - ~ ) ]  "~ Oz--- 5 + (27) 

(0 
+ ( p + l )  2zN+p+g B ~ §  

which leads to the third-order equation f o r / ~  

/'0 p +  1/2\ ~,,-1 (--1) p 
(28) 

BpO is obtained from j~o = e-"2 = e-Y. This equation allows us to get directly 
the self-function without summing the zPA~(z), (26). 

6. S E R I E S  

The functions .4~ and B~, which are entire functions of v/z, can be 
easily generated from the differential equations (21) and (28) with the 
"initial" conditions (23). The density matrix, and then P, can be calculated 
as triple sums of t e r m s  (--$V/~)nXPz q/2 or (--e~/~-~) " yPZ q/2, which 
reduce to double sums in the exchange and self cases. The convergence 
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when summing on n can be extensively improved by calculating first the P" 
before summing on n: 

PT = Z ( - 1 ) " - ' ( e x / ~ ) " P "  
n~>l 

n>~ 1 

1(K~)3, pl = K  l, p 2 _ K 2 1 ( K I ) 2  ' p3=K3__K1K2+g ... 

(29) 

This point was mentioned by Pollock ~5) and is clearly illustrated by the 
values at the origin, where the jr~ are given by the ~g, (23): 

p,  = V/-~, p2__ n_2 \3(n-- 1 ) -~ 0.074 

p3 =x//-~ ( ( 3 ) - - ~ - +  = 0.0058 

(30) 

The ratio P"+ l/p,, is currently of the order of 1/10 (u and v), whereas the 
ratio K"+I/K " is not far from 1. In a practical sense, it is enough to 
calculate the first eight or ten functions for precisely evaluating P in the 
high-temperature domain 3*< I0 ( T >  2.7 eV for two electrons). 

The coefficients of the series 

Z~p(g)= ~,  mnp. q.7,q/2 (31)  
q~>o 

are then given by 

1 .7t " - 2  . P + 1 / 2 - n / 2  ~,, 
"4'~'~ P - L ~  -~p~  l -~  AP-L~ 

(p>~l,n~>O), Ao.o--a o - "  ---" 

.~,q q(q+ 2p+ l) 
[(q + 2p + 1 --n) Ap, q_2--l- Ap, q_l] 

(n >>.O, p>~O, q>>. l) 

(32) 

with the convention A p ,  q - -  0 for n < 0 or q < O. It is possible to avoid multi- 
/~2 n plying by e , (29), by drawing up the recurrences for the coefficients ap, q 
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of the functions K ~. We shall give the formulas with extensive results. In the 
exchange case (p = v), we have 

A"(z) = eL#"(z)= ~ a;z q/2, A~ = 1 
q>~O 

2 
n - -  n n -  1 

aq q ( q + l ) [ ( n + q - - 2 ) a q _ 2 - - a q _ t ]  (n>~ 1, q~> 1) 

. . . . . .  = 0  ( q < 0 )  a o = ao, aq 

Finally, the self-function (p = 0) is given by 

(33) 

Bn(z) = Z bnq zq/2, B~ = 1 
q~O 

2 
" -- b q _ l ]  (n>/1, q~> 1) bq= q 2 ( q + l ) [ ( q - Z ) ( q + l - n ) b q _ 2 + 2 (  q � 8 9  

( 3 4 )  

n _ _  - n t! b o - a o, bq = 0 (q < O) 

All these series converge for all z. The functions P" are finite for all 
distances and tend to zero at large distances. The series in z*, truncated at 
a given order, give good results for any spatial configuration if the value at 
the origin is good. Of  course, the number of terms which are needed 
increases with the value of ~*. 

7. GENERAL SOLUTION 

-"  [from (32)] lead to the The expansions of the first coefficients Ap, q 
following expansion for the g": 

- , , _  - - - '  x / '  ~ [ � 8 9  ~, + ,  ~ , - 2 ]  J ~ ' ( x , z ) = a  o a o + a o ~a 0 z 

- [ ~ ( . -  4) G - '  + ,~G -~] ?/2+ . . .  

+ x { [ -  � 8 9  o . . . .  2] 

+ [ ~ ( n -  4) ag-  ' - maol . . . .  31 x/~z + ,  .. .} 

+ x 2 { E ~ ( n _ 3 ) ( n _ 5 ) - , ,  •  1 - , - 4 1  ao - -  48a 0 - - 4 ~ a o  j -I- . . , }  

+ . . .  ( 3 5 )  

with ag = 0 for n < 0; this suggests that K,(x, z) can be expressed as a func- 
tion of R,(x  = 0, z = 0 ) =  .4,(z = 0) and of its derivatives with respect to r*. 



Coulomb Pair Density M a t r i x .  II 471 

Therefore, we come back to differential equations for R~ in the variables 
(~, r/) and introduce the expansion in powers of r/= 2 x / ~  x/~: 

gr(r r/)-- 1.,3/2 E r/zPs~( 1-*, r 21,-- 22/,1-*p+3/2~ 
p>~o 

The differential equations (10) and (12) for R~ lead to 

2 P + l  0 ~) ~ + 4 ( P +  1)2 ~ + , = 0  

0~5) ~ +4(P + 1)z ~ + ,  = 0 

from which we deduce the function ~(1.*, #), 

1 ( 0 0 2 "X p 
4(1.*, 

in terms of the exchange function 

2(1.*, z) 
~(~*, ~) = ~ =o(~*, ~) 1.,3/2 

(36) 

(37) 

(38) 

The latter satisfies the differential equation 

b-~+~o~ 
a - ~ -  ~(1.*' ~) = o (39) 

The series expansion 

~7(1.*, #) = ~ (e~)q/~q(1.*) (40)  
q~>O 

is then determined by 

(q.-F2)(q+3)Aq+E=.dq+l+~,A q (q>~- l ) ,  Aq=0 (q<0)  

(41) 
Ao(r*) - A(r~" z = 0) 1 1 -" - e - er(0, 0) 

E ( - - eV/~)  " ao-- r--g~ l.,3/2 -- 1.,3/2 n~>0 

Equations (38) and (41) give .K~(~, r/) as a series in ~ and r/2, with coef- 
ficients which are indeed functions only of/~o(1.*) and its derivatives with 
respect to 1.*. 
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For the self-function, it is possible to avoid summing on p. In the same 
way as in Section 5, we deduce for the self-function 

B 
---- .(*3/2 --  ~ ( ~ ) q  Mq(z*) (42) 

q>~0 

the third-order differential equation 

0 - ~ + ~ 0 ~  2 0~0r* + ~5 - 2 e  ~ - ~ 5  :~(z*, r = 0 (43) 

and the recurrence for the coeff• Mq 

O 
( q + 3 ) 2 ( q + 4 ) M q + 3 = ( 2 q + 5 ) M q + 2 + ( q + l ) ~ r ,  Mq+ ~ (q~> - 2 )  

Mq = 0 (q < O) (44) 

M q =  0 = .71 0 

It must be noticed that the coefficients .~q and Mq depend on e as -4o- 

8. VALUE AT THE ORIGIN 

For low temperature, it is necessary to sum exactly the series (41) 
giving -']0(r*). This result is obtained by means of an integral. For that, 
we use Hankel's representation (m for F ( n - 1 ) / 2  which appears in the 
coefficient 6g and the series expansion of ~(1 + z) (psi function) ('') and we 
get 

/lo(z*) = .4 ( z *,___fz --_- O) _ ~ du F( u ) e - r * u  
-C* 3/2 

(45) 

with the following branch definition of V/~ and Log u: 

v/u=x//-pe i~ , L o g u = L o g p + i O ,  u=pe  i~ (0<  0 < 2 n )  (46) 

The path C starts from + oo on the real axis, circles the point u = -1 /4  in 
the counterclockwise direction, and returns to + oo by never crossing the 
real axis from u =  -1 /4  to +oo. The ~ function in F exhibits for e =  - 1 ,  
and only in that case, simple poles for - i/2 x/~ = - n  (n 1> 1 ). In the func- 
tion F(u), ie V'~ and Log u are the contributions of the terms n = 0 and 
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n = 1 in the sum (41); the terms n >t 2 precisely give the difference of the psi 
function. By isolating the contributions of the poles (e = - 1 )  and bringing 
together the contributions which result from the difference F(u+iot)- 
F(u - i~) (u > 01 0c~ 0), we obtain the integral 

;c duf(u)F(u)e-~'" = 1 + e x / / - ~ 2  y '  ~le~'/4"2f( - ~1 )  
n>~l 

+o~ e-**u 
+ 2e x /~  fo dUe~,/,/~_lf(u) (47) 

of any function f(u) ,  which is assumed to be regular on and near the half 
real axis u/> -1/4 .  We have used the formula giving Im r  + iy) in terms 
of th(ny/2), t~t~ The first term ( e = - 1 )  is the contribution of the bound 
states which exist in that case. 

9. V A L U E  AT  F IN ITE  D I S T A N C E  

It is easily seen that the functions which appear in the expansion of 
R~(~, q) can be written as integrals in the same form. From the recurrence 

1 ~ - -  I 1 ~ Al = ~Ao, A2 = ~(~Ao + &'lo/ar*) ..... we deduce 

,71q = fc du F(u) e-**UQq(u) (48) 

where the polynomials Qq(u) a r e  defined by 

(q + 2)(q + 3) Qq+2(u) 

=Qq+l(u)-uQq(u) (q>~O), Q o = l ,  QI=�89 (49) 

The function 

Q(e~, u)= ~ Qq(u)(e~) q, 
q>~O 

_ 2 ~=r - ~ =  f du e-~'=Q(eG u) (50) 

satisfies the differential equation 

4--~3--~-~+u Q(e~, u)=0 (51) 
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In the same way, we get for the functions ~ and g7 

2-'Pr *---y+ 3/2 - Ic du F(u) e-~*"Qp(e~, u) 

r~T/2 - du F(//) e-~*"R(e~, q,//) 

Q'(e~, u) = ~ Qp(u)(e~) q, R(e~, q, u) = ~ rl2pQp(e~, u) 
q~O p~O 

22P(p!)2 ~-~+u Q(e~,u) (p>~O) 

the recurrences 

(52) 

(q+2)(q+2p+3) QqP+ 2(u) 

= Q~+ ~(u) - uQ~(u) (p 1> 0, q > --2), Qq-OP - (q< 0) 
Q~-l(u) 

ag(u)-(2p)3(2p+l)(l+4p2u) (p>~ 1), a ~  

and the differential equations 

(0~2 2 " + 1 0  e ) + ~ a~ ~ +u Qp(e~,u)=O 

(53) 

(54) 
02 /02 1 Oh] (02 2 0  e+q 02 

- u R =  R 

It is easily seen that O~q(U) and Q~q+l(u) are polynomials of degree p + q 
in u. 

Finally, in the self case these formulas are 

Mq = ;c did F(u) e-r*USq(u) (55) 

(q + 3 )2 (q + 4) Sq + 3(u)  = (2q + 5 ) Sq + 2(//)  - -  (q + 1 ) uSq + l (U)  

So= 1, Sq=O (q<0)  (56) 

B 
= I du F(u) e-r*"S(e~, u), S(e~, u) = ~ Sq(u)(e~) q (57) 

T'3/2 C q>~O 

03 402 0 ( 2  2e'~O e l ~ j  ~ s(.~, u) = 0 (58) 

S2q+2(u) and S2q+ i(u) are polynomials of degree q in u. 
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10. I N T E G R A L  R E P R E S E N T A T I O N  

By using Laplace transformation for the differential equation (51), we 
deduce the following integral representation of the function Q(e~, u): 

Integration is made on a closed contour encircling, and not crossing, the 
branch line t = it2 ( - 1 ~< t 2 ~ 1 ) of the logarithm. The branch definition for 
that function is 

t + i  
L o g - - = L o g r l + i ( c p l - ~ 0 2 ) ,  t + i = r l  ei~l, t - i = r 2  ei~~ (60) 

t -- i r2 

and x/~ is defined in (46) for complex u. 
The function Qp(e~, u) of (52) follows by derivating (59), and 

summing the series in ~/2p, we get for R(e~, q, u) 

~/, i Lo t + i  . 

• Io(q V'~(l + t 2) a/2) (61) 

with the same contour, and the same branch definition of Log[ (t + i ) / ( t - i )]  
�9 and ~ as in (59); Io is the Bessel function, ('1) which is an entire function 

of ~/2u(1 +tz) ,  so that the branch definition of (1 +t2) 1/2 is not relevant. 
This formula gives, with (52), the density matrix as a double integral, 
which is valid for all values of e, r*, ~, and ~/. This result has been obtained 
by successively summing the three series in r*, 3, and q. For integrating 
on u, see (47). 

11. S O M E  A P P L I C A T I O N S  

All these results allow us to get numerical values of P and small- and 
large-distance expansions. Here we give some examples. From (52), the 
expansion of P~(~, q) is written in the form 

e2_qz]  

= 1 + ~, q2p(e~)q Qp(u) (62) 
p , q  >~ O 
2p+q~O 
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where f(u) stands for the mean value of f (u)  on C, 

f(u)= Icdu f(u) F(u) e-~'"/~cdU F(u) e-~'" (63) 

As the polynomials Q~(u) are quite simple, the first coefficients depend on 
z* through the mean value a(r*, e) and the variance Au2(r *, e). In this way, 
we get the expansion of P~(~, v/) to the fourth order in el and r/, valid for 
all temperatures: 

P,(~, i/) - P,(0, 0) 

= - l ( e ' ) + l ( l + 4 u - 6 ) ( ~ 2 - ~ / 2 ) + l ( l + 4 t T ) e ~ ( ~ / 2 - ~  ~ 2 ) 2  

1 
+ 3.-!-~! [(1 +4a)(1 + a ) - 6  Au 2] ~2(~2-- 2r/2) 

1 
+ 42(2!) 2 5! 3 [(1 +43)(17 + 32ti) -- 192 Au 2] V14 (64) 

The functions P~(0, 0), if,.., are related to ,4o(r*) by 

3 a 
P~(0, 0) = - L o g  -40 - ~ Log z*, ff = - at---- ~ Log -~o 

(65) a 2 
Au 2 = Or,------- i Log -~0 

The high-temperature ( r * <  1) expansions of these functions are easily 
obtained from (41). In the low-temperature limit (r*>> 1 ), we get from (45) 
with (47) the expansions 

(~__~2/3 .1'3 [ ' 8  //7"s 4/3"] 5 
, ,-Lo L t  ) <,:-i-i) 

(66) 
1 , 

- L o g , t o ~  - ~ r  - L o g x / / ~  (e= -1 )  

Therefore, in this limit, ti tends to 0 for e =  +I ,  and to - 1 / 4  for e =  -1 ;  
the moments Au 2 .... tend to 0 in both cases. Thus, it appears that the 
difference P~(~, v/)-P~(0, 0) tends to a finite limit as the temperature 
decreases. In the attractive case, the corresponding contributions come 
from the ground state ( n = l ) ;  g" is then proportional to R( -~ , r / ,  u =  
--1/4). In the repulsive case, g7 becomes proportional to R(~, ~/, u=0) .  
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At large distances, the behavior of P, of course, depends again on the 
temperature. 

The large-distance expansion of P,(~, ~) (self case) is easily obtained 
from the differential equation (43). The solution ~ = z ' * 3 / Z e - t ' ,  such that P 
tends to zero as ~ tends to infinity, is 

__ , 1 * 3  4 7* 5 

�9 "t- ( -- 4 X'l~ "~" 9~5 X9)  ~'6 (67) 

2~ 
X =  

valid for ~/2 ~,~2 ".2/3 when r * >  1, and ~/2 > x/% -g when r * <  1. The first 
term of this asymptotic series is the Coulomb potential, and the following 
terms are Wigner-Kirkwood corrections, which appreciably improve the 
precision. 

In the exchange case, the large-distance expansion of P is obtained 
from (21 and (22) in the form 

- - m  p - - m  P~(~,r/=0)~- y'  r *p (1) p - l  P,,, ( Y )  X p+' '  
p>~l 

2e ~2 
X - ~ - ,  Y= Log~-g+ y 

(68) 

where y is Euler's constant and the coefficients PPm are polynomials in Y. 
The first polynomials are given by 

P~ = �89 Y, P1 = �88 P~ = ~ (2 )  

1 3 2 P2 = ~6, P ,  - - ~ 6 [ Y 2 - Z Y + Z + g ( 2 ) ] ,  P 3 = ~ g ( 3 )  
(69) 

P~=• P2z-~[3Y2--13Y+~+3g(Z)]- 

P~ = l [  --~(2) Y+ ~(2)-- ~(3)], po -4 -~ (4 )  

This expansion is valid for ~/2 > r* when r* > 1, and ~/2 > x / ~  when 
r * < l .  

In Table I, we compare results for P~(~, ~) (self case) for r* = 10 and 
e =  +1, calculated by the series expansion (34) with n = 8, by the integral 
(57) [the function S(~, u) being obtained by summing the series], by the 
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Table I. Calculat ions of P,(]~, [ )  (Se l f -Case)  for  T *=  10, e =  +1  ~ 

Small-~ Large-~ 
~/2 Series Integral expansion expansion 

0 5.0138 5.013861 
0.2 4.8144 4.814377 
0.4 4.6177 4.617686 
0.6 4.4258 4.425809 
0.8 4.2401 4.240091 
1 4.0613 4.061362 
1.5 3.6474 3.647531 
2 3.2811 3.281137 
2.5 2.9596 2.959366 
3 2.6785 2.677934 
4 2.2182 2.218010 
5 1.8677 1.867807 
6 1.5995 1.599628 
7 1.3919 1.391910 
8 1.2285 1.228525 
9 1.0978 1.097767 

I0 0.9913 0.991292 

5.013861 
4.814377 
4.617686 
4.425809 
4.240090 
4.061372 
3.648627 
3.301162 

2.156637 
1.860152 
1.598541 
1.391776 
1.228516 
1.097770 
0.991294 

aSeries expansion [Eq. (34)]  with n = 8 ;  integral [Eq. (57)] ;  small-distance expansion 
performed to the order 8 in ~ [as in Eq. (64)]; and large-distance expansion [Eq. (67)]. The 
accuracy is lower in the calculation by series than by integral because the number (eight) of 
functions P" that we have kept is barely enough for that value of r*. 

small-distance expansion of P~ in (64), which we performed up to the order 
8 in ~, and finally by the large-distance expansion (67). 

In Table II, some values of P~(~:, r/) are given for r* = 1 and e =  - 1  by 
using the series expansion (32) with n = 8. The limits I~/v = (1 -q 2 / (2 )u 2 =  0 
and 1, respectively, correspond to the self and exchange cases. The varia- 
tions of P,  increase when Iz/v tends to one. 

Table II. Values of P,(]~, rl) for  T*=  1, e =  --1 Calculated by 
Series Expansion [Eq. ( 3 2 ) ]  w i t h  n = 8  

~/2 (1 -- r/2/~2)~/2 = 0 =0.2 =0.4 =0.6 =0.8 =1  

0 --1.85282 -1.85282 -1.85282 --1.85282 -1.85282 -1.85282 
0.1 --I.75291 --1.75309 --1.75363 -1.75454 --1.75581 - I .75744 
0.5 --1.36532 --1.36869 --1.37889 -1.39613 --1.42079 --1.45341 
1 --0.95639 --0.96418 --0.98833 --1.03134 --1.09774 --1.19482 
1.5 --0.67583 --0.68434 --0.71174 --0.76447 -0.85675 --1.01758 
2 --0.50602 --0.51309 -0.53646 --0.58448 --0.68017 --0.88944 
2.5 -0.40256 --0.40819 -0.42695 --0.46663 --0.55301 -0.79259 
3 --0.33450 -0.33913 --0.35458 -0.38740 --0.46164 --0.71675 
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